Algorithm for parallel Laplacian growth by iterated conformal maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithm for parallel Laplacian growth by iterated conformal maps.

We report an algorithm to generate Laplacian growth patterns using iterated conformal maps. The difficulty of growing a complete layer with local width proportional to the gradient of the Laplacian field is overcome. The resulting growth patterns are compared to those obtained by the best algorithms of direct numerical solutions. The fractal dimension of the patterns is discussed.

متن کامل

Iterated conformal dynamics and Laplacian growth.

The method of iterated conformal maps for the study of diffusion limited aggregates (DLA) is generalized to the study of Laplacian growth patterns and related processes. We emphasize the fundamental difference between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are grown by advancing each boundary point in parallel, proportional to the gradient ...

متن کامل

Dynamics of conformal maps for a class of non-Laplacian growth phenomena.

Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulation...

متن کامل

Quasistatic fractures in brittle media and iterated conformal maps.

We study the geometrical characteristic of quasistatic fractures in brittle media, using iterated conformal maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution of the Lamé equations without resorting to lattice models. Typical fracture patterns exhibit increased ramification due to the increase of the stress at the tips. We find the rou...

متن کامل

Harmonicity of Horizontally Conformal Maps and Spectrum of the Laplacian

We discuss the harmonicity of horizontally conformal maps and their relations with the spectrum of the Laplacian. We prove that if φ : M → N is a horizontally conformal map such that the tension field is divergence free, then φ is harmonic. Furthermore, if N is noncompact, then φ must be constant. Also we show that the projection of a warped product manifold onto the first component is harmonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2004

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.69.031401